Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Database
Language
Document Type
Year range
1.
Saudi Pharm J ; 31(2): 228-244, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2238542

ABSTRACT

MERS-CoV belongs to the coronavirus group. Recent years have seen a rash of coronavirus epidemics. In June 2012, MERS-CoV was discovered in the Kingdom of Saudi Arabia, with 2,591 MERSA cases confirmed by lab tests by the end of August 2022 and 894 deaths at a case-fatality ratio (CFR) of 34.5% documented worldwide. Saudi Arabia reported the majority of these cases, with 2,184 cases and 813 deaths (CFR: 37.2%), necessitating a thorough understanding of the molecular machinery of MERS-CoV. To develop antiviral medicines, illustrative investigation of the protein in coronavirus subunits are required to increase our understanding of the subject. In this study, recombinant expression and purification of MERS-CoV (PLpro), a primary goal for the development of 22 new inhibitors, were completed using a high throughput screening methodology that employed fragment-based libraries in conjunction with structure-based virtual screening. Compounds 2, 7, and 20, showed significant biological activity. Moreover, a docking analysis revealed that the three compounds had favorable binding mood and binding free energy. Molecular dynamic simulation demonstrated the stability of compound 2 (2-((Benzimidazol-2-yl) thio)-1-arylethan-1-ones) the strongest inhibitory activity against the PLpro enzyme. In addition, disubstitutions at the meta and para locations are the only substitutions that may boost the inhibitory action against PLpro. Compound 2 was chosen as a MERS-CoV PLpro inhibitor after passing absorption, distribution, metabolism, and excretion studies; however, further investigations are required.

2.
J Mol Struct ; 1275: 134642, 2023 Mar 05.
Article in English | MEDLINE | ID: covidwho-2122710

ABSTRACT

COVID-19 is the most devastating disease in recent times affecting most people globally. The higher rate of transmissibility and mutations of SARS-CoV-2 along with the lack of potential therapeutics has made it a global crisis. Potential molecules from natural sources could be a fruitful remedy to combat COVID-19. This systematic review highlights the detailed therapeutic implication of naturally occurring glycyrrhizin and its related derivatives against COVID-19. Glycyrrhizin has already been established for blocking different biomolecular targets related to the SARS-CoV-2 replication cycle. In this article, several experimental and theoretical evidences of glycyrrhizin and related derivatives have been discussed in detail to evaluate their potential as a promising therapeutic strategy against COVID-19. Moreover, the implication of glycyrrhizin in traditional Chinese medicines for alleviating the symptoms of COVID-19 has been reviewed. The potential role of glycyrrhizin and related compounds in affecting various stages of the SARS-CoV-2 life cycle has also been discussed in detail. Derivatization of glycyrrhizin for designing potential lead compounds along with combination therapy with other anti-SARS-CoV-2 agents followed by extensive evaluation may assist in the formulation of novel anti-coronaviral therapy for better treatment to combat COVID-19.

3.
Curr Res Virol Sci ; 2: 100015, 2021.
Article in English | MEDLINE | ID: covidwho-1597926

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is responsible for the current pandemic coronavirus disease of 2019 (COVID-19). Like other pathogens, SARS-CoV-2 infection can elicit production of the type I and III interferon (IFN) cytokines by the innate immune response. A rapid and robust type I and III IFN response can curb viral replication and improve clinical outcomes of SARS-CoV-2 infection. To effectively replicate in the host, SARS-CoV-2 has evolved mechanisms for evasion of this innate immune response, which could also modulate COVID-19 pathogenesis. In this review, we discuss studies that have reported the identification and characterization of SARS-CoV-2 proteins that inhibit type I IFNs. We focus especially on the mechanisms of nsp1 and ORF6, which are the two most potent and best studied SARS-CoV-2 type I IFN inhibitors. We also discuss naturally occurring mutations in these SARS-CoV-2 IFN antagonists and the impact of these mutations in vitro and on clinical presentation. As SARS-CoV-2 continues to spread and evolve, researchers will have the opportunity to study natural mutations in IFN antagonists and assess their role in disease. Additional studies that look more closely at previously identified antagonists and newly arising mutants may inform future therapeutic interventions for COVID-19.

4.
Metabol Open ; 11: 100103, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1294065

ABSTRACT

In December 2019, a highly transmissible, pneumonia epidemic caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), erupted in China and other countries, resulting in devastation and health crisis worldwide currently. The search and using existing drugs support to curb the current highly contagious viral infection is spirally increasing since the pandemic began. This is based on these drugs had against other related RNA-viruses such as MERS-Cov, and SARS-Cov. Moreover, researchers are scrambling to identify novel drug targets and discover novel therapeutic options to vanquish the current pandemic. Since there is no definitive treatment to control Covid-19 vaccines are remain to be a lifeline. Currently, many vaccine candidates are being developed with most of them are reported to have positive results. Therapeutic targets such as helicases, transmembrane serine protease 2, cathepsin L, cyclin G-associated kinase, adaptor-associated kinase 1, two-pore channel, viral virulence factors, 3-chymotrypsin-like protease, suppression of excessive inflammatory response, inhibition of viral membrane, nucleocapsid, envelope, and accessory proteins, and inhibition of endocytosis were identified as a potential target against COVID-19 infection. This review also summarizes plant-based medicines for the treatment of COVID-19 such as saposhnikoviae divaricata, lonicerae japonicae flos, scutellaria baicalensis, lonicera japonicae, and some others. Thus, this review aimed to focus on the most promising therapeutic targets being repurposed against COVID-19 and viral elements that are used in COVID-19 vaccine candidates.

5.
J Mol Struct ; 1239: 130488, 2021 Sep 05.
Article in English | MEDLINE | ID: covidwho-1198992

ABSTRACT

Corona Virus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome coronavirus (SARS CoV-2) has been declared a worldwide pandemic by WHO recently. The complete understanding of the complex genomic structure of SARS CoV-2 has enabled the use of computational tools in search of SARS CoV-2 inhibitors against the multiple proteins responsible for its entry and multiplication in human cells. With this endeavor, 177 natural, anti-viral chemical entities and their derivatives, selected through the critical analysis of the literatures, were studied using pharmacophore screening followed by molecular docking against RNA dependent RNA polymerase and main protease. The identified hits have been subjected to molecular dynamic simulations to study the stability of ligand-protein complexes followed by ADMET analysis and Lipinski filters to confirm their drug likeliness. It has led to an important start point in the drug discovery and development of therapeutic agents against SARS CoV-2.

6.
Acta Pharm Sin B ; 10(5): 766-788, 2020 May.
Article in English | MEDLINE | ID: covidwho-2121

ABSTRACT

SARS-CoV-2 has caused tens of thousands of infections and more than one thousand deaths. There are currently no registered therapies for treating coronavirus infections. Because of time consuming process of new drug development, drug repositioning may be the only solution to the epidemic of sudden infectious diseases. We systematically analyzed all the proteins encoded by SARS-CoV-2 genes, compared them with proteins from other coronaviruses, predicted their structures, and built 19 structures that could be done by homology modeling. By performing target-based virtual ligand screening, a total of 21 targets (including two human targets) were screened against compound libraries including ZINC drug database and our own database of natural products. Structure and screening results of important targets such as 3-chymotrypsin-like protease (3CLpro), Spike, RNA-dependent RNA polymerase (RdRp), and papain like protease (PLpro) were discussed in detail. In addition, a database of 78 commonly used anti-viral drugs including those currently on the market and undergoing clinical trials for SARS-CoV-2 was constructed. Possible targets of these compounds and potential drugs acting on a certain target were predicted. This study will provide new lead compounds and targets for further in vitro and in vivo studies of SARS-CoV-2, new insights for those drugs currently ongoing clinical studies, and also possible new strategies for drug repositioning to treat SARS-CoV-2 infections.

SELECTION OF CITATIONS
SEARCH DETAIL